The Zen of the Quantum Omlette

[Quantum mechanics] is not purely epistemological; it is a peculiar mixture describing in part realities of Nature, in part incomplete human information about Nature, all scrambled up by Heisenberg and Bohr into an omelette that nobody has seen how to unscramble. Yet we think that the unscrambling is a prerequisite for any further advance in basic physical theory. For, if we cannot separate the subjective and objective aspects of the formalism, we cannot know what we are talking about; it is just that simple.” [1]

— E. T. Jaynes

Note: this post is about foundational issues in quantum mechanics, which means it is rather long and may be boring to non-experts (not to mention a number of experts). I’ve tried to use simple language so that the adventurous layman can nevertheless still get the gist of it, if he or she is willing (hey, fortune favours the brave).

As I’ve said before, I think research on the foundations of quantum mechanics is important. One of the main goals of work on foundations (perhaps the main goal) is to find a set of physical principles that can be stated in common language, but can also be implemented mathematically to obtain the model that we call `quantum mechanics’.

Einstein was a big fan of starting with simple intuitive principles on which a more rigorous theory is based. The special and general theories of relativity are excellent examples. Both are based on the `Principle of Relativity’, which states (roughly) that motion between two systems is purely relative. We cannot say whether a given system is truly in motion or not; the only meaningful question is whether the system is moving relative to some other system. There is no absolute background space and time in which objects move or stand still, like actors on a stage. In fact there is no stage at all, only the mutual distances between the actors, as experienced by the actors themselves.

The way I have stated the principle is somewhat vague, but it has a clear philosophical intention which can be taken as inspiration for a more rigorous theory. Of particular interest is the identification of a concept that is argued to be meaningless or illusory — in this case the concept of an object having a well-defined motion independent of other objects. One could arrive at the Principle of Relativity by noticing an apparent conspiracy in the laws of nature, and then invoking the principle as a means of avoiding the conspiracy. If we believe that motion is absolute, then we should find it mighty strange that we can play a game of ping-pong on a speeding train, without getting stuck to the wall. Indeed, if it weren’t for the scenery flying past, how would we know we were traveling at all? And even then, as the phrasing suggests, could we not easily imagine that it is the scenery moving past us while we remain still? Why, then, should Nature take such pains to hide from us the fact that we are in motion? The answer is the Zen of relativity — Nature does not conceal our true motion from us, instead, there is no absolute motion to speak of.

A similar leap is made from the special to the general theory of relativity. If we think of gravity as being a field, just like the electromagnetic field, then we notice a very strange coincidence: the charge of an object in the gravitational field is exactly equal to its inertial mass. By contrast, a particle can have an electric charge completely unrelated to its inertia. Why this peculiar conspiracy between gravitational charge and inertial mass? Because, quoth Einstein, they are the same thing. This is essentially the `Principle of Equivalence’ on which Einstein’s theory of gravity is based.

Einstein

These considerations tell us that to find the deep principles in quantum mechanics, we have to look for seemingly inexplicable coincidences that cry out for explanation. In this post, I’ll discuss one such possibility: the apparent equivalence of two conceptually distinct types of probabilistic behaviour, that due to ignorance and that due to objective uncertainty. The argument runs as follows. Loosely speaking, in classical physics, one does not seem to require any notion of objective randomness or inherent uncertainty. In particular, it is always possible to explain observations using a physical model that is ontologically within the bounds of classical theory and such that all observable properties of a system are determined with certainty. In this sense, any uncertainty arising in classical experiments can always be regarded as our ignorance of the true underlying state of affairs, and we can perfectly well conceive of a hypothetical perfect experiment in which there is no uncertainty about the outcomes.

This is not so easy to maintain in quantum mechanics: any attempt to conceive of an underlying reality without uncertainty seems to result in models of the world that violate dearly-held principles, like the idea that signals cannot propagate faster than light, and experimenters have free will. This has prompted many of us to allow some amount of `objective’ uncertainty into our picture of the world, where even the best conceivable experiments must have some uncertain outcomes. These outcomes are unknowable, even in principle, until the moment that we choose to measure them (and the very act of measurement renders certain other properties unknowable). The presence of these two kinds of randomness in physics — the subjective randomness, which can always be removed by some hypothetical improved experiment, and the objective kind of randomness, which cannot be so removed — leads us into another dilemma, namely, where is the boundary that separates these two kinds of uncertainty?

E.T. Jaynes
“Are you talkin’ to me?”

Now at last we come to the `omelette’ that badass statistician and physicist E.T. Jaynes describes in the opening quote. Since quantum systems are inherently uncertain objects, how do we know how much of that uncertainty is due to our own ignorance, and how much of it is really `inside’ the system itself? Views range from the extreme subjective Bayesian (all uncertainty is ignorance) to various other extremes like the many-worlds interpretation (in which, arguably, the opposite holds: all uncertainty is objective). But a number of researchers, particularly those in the quantum information community, opt for a more Zen-like answer: the reason we can’t tell the difference between objective and subjective probability is that there is no difference. Asking whether the quantum state describes my personal ignorance about something, or whether the state “really is” uncertain, is a meaningless question. But can we take this Zen principle and turn it into something concrete, like the Relativity principle, or are we just by semantics avoiding the problem?

I think there might be something to be gained from taking this idea seriously and seeing where it leads. One way of doing this is to show that the predictions of quantum mechanics can be derived by taking this principle as an axiom. In this paper by Chiribella et. al., the authors use the “Purification postulate”, plus some other axioms, to derive quantum theory. What is the Purification postulate? It states that “the ignorance about a part is always compatible with a maximal knowledge of the whole”. Or, in my own words, the subjective ignorance of one system about another system can always be regarded as the objective uncertainty inherent in the state that encompasses both.

There is an important side comment to make before examining this idea further. You’ll notice that I have not restricted my usage of the word `ignorance’ to human experimenters, but that I take it to apply to any physical system. This idea also appears in relativity, where an “observer in motion” can refer to any object in motion, not necessarily a human. Similarly, I am adopting here the viewpoint of the information theorists, which says that two correlated or interacting systems can be thought of as having information about each other, and the quantification of this knowledge entails that systems — not just people — can be ignorant of each other in some sense. This is important because I think that an overly subjective view of probabilities runs the risk of concealing important physics behind the definition of the `rational agent’, which to me is a rather nebulous concept. I prefer to take the route of Rovelli and make no distinction between agents and generic physical systems. I think this view fits quite naturally with the Purification postulate.

In the paper by Chiribella et. al., the postulate is given a rigorous form and used to derive quantum theory. This alone is not quite enough, but it is, I think, very compelling. To establish the postulate as a physical principle, more work needs to be done on the philosophical side. I will continue to use Rovelli’s relational interpretation of quantum mechanics as an integral part of this philosophy (for a very readable primer, I suggest his FQXi essay).

In the context of this interpretation, the Purification postulate makes more sense. Conceptually, the quantum state does not represent information about a system in isolation, but rather it represents information about a system relative to another system. It is as meaningless to talk about the quantum state of an isolated system as it is to talk about space-time without matter (i.e. Mach’s principle [2]). The only meaningful quantities are relational quantities, and in this spirit we consider the separation of uncertainty into subjective and objective parts to be relational and not fundamental. Can we make this idea more precise? Perhaps we can, by associating subjective and objective uncertainty with some more concrete physical concepts. I’ll probably do that in a follow up post.

I conclude by noting that there are other aspects of quantum theory that cry out for explanation. If hidden variable accounts of quantum mechanics imply elements of reality that move faster than light, why does Nature conspire to prevent us using them for sending signals faster than light? And since the requirement of no faster-than-light signalling still allows correlations that are stronger than entanglement, why does entanglement stop short of that limit? I think there is still a lot that could be done in trying to turn these curious observations into physical principles, and then trying to build models based on them.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s